102 research outputs found

    Phase-change thin films growth and functionality:towards phase-change memory and reconfigurable nanophotonics

    Get PDF
    Computing and fast data transfers propelled our technological progress in the past few decades with fundamental research on semiconductor materials. However, classical storage and computing technologies face scaling limitations and the Von Neumann architectural bottleneck. Phase-change materials (PCMs), with more than one stable phase and significant electrical and optical contrasts, are the primary contenders for fast, non-volatile, and large storage capacity devices for future optoelectronic applications. GeSbTe alloys, specifically Ge2Sb2Te5 (GST225), are the most studied and at the center of research in the field. However, major reliability issues hinder the full integration of the GeSbTe alloys into functioning devices. This thesis focuses on the growth, characterization, and functionality of various new-generation phase-change alloys. Thin films of phase-change alloys, with unique properties attractive for data storage and optoelectrical applications, have been produced by the pulsed laser deposition (PLD) technique. Growth optimization, characterization, and device designs and testing based on monatomic Sb, binary GaSb and Sb2Se3, and ternary Ge-rich GST thin films are detailed in this thesis. Superior properties, such as thickness-dependent crystallization dynamics, increased crystallization temperatures, and attractive optical contrasts, have been realized through state-of-the-art characterization tools. Moreover, optoelectrical devices utilizing the phase-change alloys and the realized properties have been designed, fabricated, and tested for applications in data storage, reflective-based display, and optical sensors

    Thickness-Dependent Crystallization of Ultrathin Antimony Thin Films for Monatomic Multilevel Reflectance and Phase Change Memory Designs

    Get PDF
    [Image: see text] Phase change materials, with more than one reflectance and resistance states, have been a subject of interest in the fields of phase change memories and nanophotonics. Although most current research focuses on rather complex phase change alloys, e.g., Ge2Sb2Te5, recently, monatomic antimony thin films have aroused a lot of interest. One prominent attractive feature is its simplicity, giving fewer reliability issues like segregation and phase separation. However, phase transformation and crystallization properties of ultrathin Sb thin films must be understood to fully incorporate them into future memory and nanophotonics devices. Here, we studied the thickness-dependent crystallization behavior of pulsed laser-deposited ultrathin Sb thin films by employing dynamic ellipsometry. We show that the crystallization temperature and phase transformation speed of as-deposited amorphous Sb thin films are thickness-dependent and can be precisely tuned by controlling the film thickness. Thus, crystallization temperature tuning by thickness can be applied to future memory and nanophotonic devices. As a proof of principle, we designed a heterostructure device with three Sb layers of varying thicknesses with distinct crystallization temperatures. Measurements and simulation results show that it is possible to address these layers individually and produce distinct and multiple reflectance profiles in a single device. In addition, we show that the immiscible nature of Sb and GaSb could open up possible heterostructure device designs with high stability after melt-quench and increased crystallization temperature. Our results demonstrate that the thickness-dependent phase transformation and crystallization dynamics of ultrathin Sb thin films have attractive features for future memory and nanophotonic devices

    Van der Waals Epitaxy of Pulsed Laser Deposited Antimony Thin Films on Lattice-matched and Amorphous Substrates

    Get PDF
    Monatomic antimony thin films have recently attracted attention for applications in phase change memory, nanophotonics, and 2D materials. Although some promising results have been reported, the true potential of Sb thin films is still hindered by the scalability issue and the lack of reliable bottom-up production. Here we demonstrate the growth of Sb thin films on a lattice-matching and amorphous substrates using pulsed laser deposition (PLD). C-axis out-of-plane textured Sb thin films were successfully deposited on Sb2Te3 and SiO2/Si3N4 substrates. In the case of growth on Sb2Te3, we show that an intermediate phase is formed at the Sb2Te3-Sb interface playing a crucial role in forming a solid coupling and thus maintaining epitaxy leading to the production of high-quality Sb thin films. A 3 - 4 nm amorphous Sb seed layer was used to induce texture and suitable surface termination for the growth of Sb thin films on amorphous substrates. The deposition parameters were fine-tuned, and the growth was monitored in situ by a Reflective High Energy Electron Diffraction (RHEED). Scanning/Transmission Electron Microscopy (S/TEM) unveiled the local structure of produced films showing the formation of ꞵ-phase Sb thin films. Our results demonstrate the feasibility to produce very smooth high-quality antimony thin films with uniform coverage, from few layers to large thicknesses, using pulsed laser deposition. We believe the results of our work on scalable and controllable Sb growth have the potential to open up research on phase-change materials and optoelectronics research

    Pulsed laser deposited stoichiometric GaSb films for optoelectronic and phase change memory applications

    Get PDF
    Phase-change memory (PCM) holds great potential in realizing the combination of DRAM-like speeds with non-volatility and large storage capacity for future electronic devices including in-memory computing. However, various (reliability) issues related to e.g. too high programming current (power consumption), resistance drift, data retention (low crystallization temperature), phase separation and density change upon switching stand in the way to make PCM really attractive. GaSb thin films have interesting optical and electrical properties which are attractive for optoelectronic and PCM applications but so far reported stoichiometric GaSb compositions are Sb-rich which produced reliability issues in PCM devices. In this study, we managed to deposit stoichiometric GaSb thin films using pulsed laser deposition (PLD) by varying deposition parameters and conditions. Using electron microscopy, the morphology of deposited films and target surface and the compositional deviation from exact stoichiometry have been investigated. We show that the directional nature of laser-target interaction is directly responsible for film quality in PLD in which particulates with high number density are generated due to directional pillar formation. Suppressing this pillar formation, by a simple 180° target rotation, showed an increase in deposition yield by 60%, exact stoichiometric transfer from target to substrate, and large reduction in particulate density. Moreover, from XRD analysis, we show that exact stoichiometric transfer from target to substrate is crucial for structural integrity of the produced films. Temperature induced structural transformation from resistivity vs. temperature measurements show a high crystallization temperature of 250 °C for stoichiometric GaSb thin film. We believe the exact stoichiometric GaSb thin films with reduced particulate densities and favorable structural and (opto)electronic properties are attractive for future PCM devices

    Strain Relaxation in "2D/2D and 2D/3D Systems":Highly Textured Mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe Heterostructures

    Get PDF
    Strain engineering as a method to control functional properties has seen in the last decades a surge of interest. Heterostructures comprising 2D-materials and containing van der Waals(-like) gaps were considered unsuitable for strain engineering. However, recent work on heterostructures based on Bi2Te3, Sb2Te3, and GeTe showed the potential of a different type of strain engineering due to long-range mutual straining. Still, a comprehensive understanding of the strain relaxation mechanism in these telluride heterostructures is lacking due to limitations of the earlier analyses performed. Here, we present a detailed study of strain in two-dimensional (2D/2D) and mixed dimensional (2D/3D) systems derived from mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe heterostructures, respectively. We first clearly show the fast relaxation process in the mica/Bi2Te3 system where the strain was generally transferred and confined up to the second or third van der Waals block and then abruptly relaxed. Then we show, using three independent techniques, that the long-range exponentially decaying strain in GeTe and Sb2Te3 grown on the relaxed Bi2Te3 and Bi2Te3 on relaxed Sb2Te3 as directly observed at the growth surface is still present within these three different top layers a long time after growth. The observed behavior points at immediate strain relaxation by plastic deformation without any later relaxation and rules out an elastic (energy minimization) model as was proposed recently. Our work advances the understanding of strain tuning in textured heterostructures or superlattices governed by anisotropic bonding

    Phase Separation in Ge-Rich GeSbTe at Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Films

    Get PDF
    Integration of the prototypical GeSbTe (GST) ternary alloys, especially on the GeTe-Sb2Te3 tie-line, into non-volatile memory and nanophotonic devices is a relatively mature field of study. Nevertheless, the search for the next best active material with outstanding properties is still ongoing. This search is relatively crucial for embedded memory applications where the crystallization temperature of the active material has to be higher to surpass the soldering threshold. Increasing the Ge content in the GST alloys seems promising due to the associated higher crystallization temperatures. However, homogeneous Ge-rich GST in the as-deposited condition is thermodynamically unstable, and phase separation upon annealing is unavoidable. This phase separation reduces endurance and is detrimental in fully integrating the alloys into active memory devices. This work investigated the phase separation of Ge-rich GST alloys, specifically Ge5Sb2Te3 or GST523, into multiple (meta)stable phases at different length scales in melt-quenched bulk and annealed thin film. Electron microscopy-based techniques were used in our work for chemical mapping and elemental composition analysis to show the formation of multiple phases. Our results show the formation of alloys such as GST213 and GST324 in all length scales. Furthermore, the alloy compositions and the observed phase separation pathways agree to a large extent with theoretical results from density functional theory calculations

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Patient Age, Sex, and Inflammatory Bowel Disease Phenotype Associate With Course of Primary Sclerosing Cholangitis

    Get PDF
    BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is an orphan hepatobiliary disorder associated with inflammatory bowel disease (IBD). We aimed to estimate the risk of disease progression based on distinct clinical phenotypes in a large international cohort of patients with PSC. METHODS: We performed a retrospective outcome analysis of patients diagnosed with PSC from 1980 through 2010 at 37 centers in Europe, North America, and Australia. For each patient, we collected data on sex, clinician-reported age at and date of PSC and IBD diagnoses, phenotypes of IBD and PSC, and date and indication of IBD-related surgeries. The primary and secondary endpoints were liver transplantation or death (LTD) and hepatopancreatobiliary malignancy, respectively. Cox proportional hazards models were applied to determine the effects of individual covariates on rates of clinical events, with time-to-event analysis ascertained through Kaplan-Meier estimates. RESULTS: Of the 7121 patients in the cohort, 2616 met the primary endpoint (median time to event of 14.5 years) and 721 developed hepatopancreatobiliary malignancy. The most common malignancy was cholangiocarcinoma (n = 594); patients of advanced age at diagnosis had an increased incidence compared with younger patients (incidence rate: 1.2 per 100 patient-years for patients younger than 20 years old, 6.0 per 100 patient-years for patients 21-30 years old, 9.0 per 100 patient-years for patients 31-40 years old, 14.0 per 100 patient-years for patients 4150 years old, 15.2 per 100 patient-years for patients 51-60 years old, and 21.0 per 100 patient-years for patients older than 60 years). Of all patients with PSC studied, 65.5% were men, 89.8% had classical or large-duct disease, and 70.0% developed IBD at some point. Assessing the development of IBD as a time-dependent covariate, Crohn's disease and no IBD (both vs ulcerative colitis) were associated with a lower risk of LTD (unadjusted hazard ratio [HR], 0.62; PPeer reviewe
    corecore